
This document contains information that is proprietary to MIPS Technologies, Inc.

MIPS Technologies, Inc. reserves the right to change any products described herein to
improve the function or design. MIPS Technolgies, Inc. does not assume any liability aris-
ing out of the application or use of any product or circuit described herein; neither does it
convey any license under patent rights nor imply the rights of others.

Copyright 1993 by MIPS Technologies, Inc. All rights reserved. No part of this document
may copied by any means without written permission from MIPS Technologies, Inc.

MIPS Technologies Inc.

2011 N Shoreline Blvd

PO Box 7311

Mountain View, CA 94039-7311

MIPS R4400MC Errata, Processor Revision 2.0 & 3.0

January 24, 1995



1

R4400 MC Errata, Processor Revision 2.0 & 3.0 1/24/95

Additional errata which affect uniprocessor designs and may affect multiprocessor configurations
are listed in the MIPS R4400 PC, R4400 SC errata. Change bars in the left column indicate correc-
tions or changes from the last version of the errata.

1. Under the conditions listed below, the EB bit in the CacheErr register is incorrectly set.

1) A store targets a shared line in the primary cache
2) The tag in this line has a parity error
3) Under this condition, the processor will stall due to a data cache miss and the CacheErr register
is set.
4) As the processor comes out of the data cache miss and before it vectors to the CacheErr excep-
tion vector, there is an instruction cache miss and a pending external request which targets the same
line with the parity error.

Under these conditions, the EB bit will get set although there was no parity error.  The EB bit im-
plies that both a data and instruction parity error have occurred.  In this case, there was only a data
parity error.

Workaround: The EB bit is meaningful only if the ER bit in the CacheErr register indicates an in-
struction error.

2  When Create-Dirty-Exclusive-SD cacheop is performed on a line which is present in the proces-
sor in Shared or Dirty Shared state; the processor invalidates the line before modifying it to Dirty
Exclusive state. This might create the following problem: If  there is a snoop or an intervention to
this line, while the processor is waiting for IvdAck, the processor could  send an incorrect  response
with an  Invalid state instead of Shared or DShared state.

Workaround:There is no workaround for this problem.

3. External Updates to a line which exists both in the PICache and PDCache at the same time caus-
es the copy of the line in the SCache and PDCache to be updated but doesn’t not change the state
of the copy in the PICache. If the line is in the SCache and the PICache, only, then the processor
properly updates the SCache line and invalidates the PICache  line; and if the line is in the SCache
and the PDCache, only, then the line gets updated in both secondary and primary caches, as ex-
pected.

Workaround: Do not allow a line to exist in both PDCache and PICache if an update protocol is
used or use "write invalidate" protocol for the instruction space.

4.  In this following sequence:

ddiv (or ddivu or div or divu)

dsll32 (or dsrl32, dsra32)

if an MPT stall occurs, while the divide is slipping the cpu pipeline, then the following double
shift would end up with an incorrect result.

Workaround: The compiler needs to avoid generating any sequence with divide followed by
extended double shift.

5. The processor sends Read Request with incorrect value of the“Link Address Retained” bit. This



2

R4400 MC Errata, Processor Revision 2.0 & 3.0 1/24/95

error occurs when the following sequence of events takes place:
1) ICache miss to a line replacing link address in scache.
2) ICache Read request is stopped by de-asserting RdRdyB
3) An external request comes during this time and R4400 has to regenerate the address and

command.

When the processor regenerates the Read Request after responding to the external request, it
compares the link address register with a different address than the instruction address that
caused the miss. As a result, sometimes it incorrectly sets or resets the“Link Address Re-
tained” bit.

The consequence of incorrectly setting the“Link Address Retained” bit are not of any concern
since the external agent would snoop assuming the line exist in shared state; but the processor
would provide the state as Invalid. However, the consequence of incorrectly not indicating the
“Link Address Retained” is significant since the atomic functionality could be broken.

Workaround: The hardware solution is to either not use the RdRdyB signal or in the case
when the RdRdyB is used, to latch the retained bit when it occurs with the first Read Request
even though the request is not accepted.

6. When a TLB refill exception occurs on an instruction fetch, the value in the CP0 register Bad-
VAddr might not match CP0 register EPC (or EPC+4 in case of a branch or jump with the delay
slot as the first instruction of the next page.

Workaround:

In the first level TLB refill exception, use the TLB probe instruction to check if the virtual address
which is in the BadVAddr register already exist in the TLB. If it is in the TLB, then eret (as the
BadVAddr was incorrect), else go ahead and write the new TLB entry and eret. By overlapping the
TLB probe operation with the other instructions in the handler, and then placing the TLB write in-
struction in the branch delay slot of a branch likely instruction, the performance overhead for this
workaround can be minimized.

Example:

mfc0 k0, context
lw k1, 0(k0)
lw k0, 4(k0)
c0 tlbp <-- additional instruction due to workaround
srl k1, k1, 3
mtc0 k1, tlblo0
srl k0, k0, 3
mfc0 k1, index <-- additional instruction due to workaround
mtc0 k0, tlblo1
bltzl k1, 1f <-- additional instruction due to workaround
c0 tlbwr

1: nop
c0 eret

If the processor takes a TLB refill exception from the first level exception then it will jump to the
“general exception handler”. Inside the “general exception handler”, when the operating system
(OS) detects an address outside the expected range in BadVAddr, it should check EPC to make
sure it is within a valid range for the process. If EPC is within the valid range, the OS should exe-



3

R4400 MC Errata, Processor Revision 2.0 & 3.0 1/24/95

cute an “eret” instruction. The refill instruction will be re-taken and BadVAddr will contain the
correct value.

If the OS is unable to determine the valid address range for the process, the value in EPC should
be used to look for a load or store instruction. If EPC does not point to a load or store, the OS should
execute an “eret”. The “eret” will then cause another TLB refill exception, which will have a valid
BadVAddr. If EPC points to a load or store, the OS must then interpret the instruction to generate
the address for the data. If this address matches the address in BadVAddr, the process tried to ac-
cess data outside the process address space. Otherwise the OS should execute an “eret” causing a
TLB refill exception where the value in BadVAddr will be valid.


